ACKNOWLEDGMENTS

As with any such endeavor, we are indebted to a large number of people and organizations for their support of this publication and their assistance in bringing it to fruition. We thank the Berryman Institute, Mississippi State University, Utah State University, Auburn University, USDA/APHIS/Wildlife Services, the Alabama Wildlife Federation, the Wildlife Damage Working Group of The Wildlife Society, the Renewable Resources Extension Act (RREA), and the Association of Fish and Wildlife Agencies for their financial and moral support of this publication. Frank Boyd was instrumental to the original concept for this publication and continued to provide valuable advice and guidance during its development. Michael Conover was key to this guide being published as part of the new Monograph series of the journal Human-Wildlife Interactions. We could not have possibly produced this document without the able assistance of our designer, Kathy Jacobs, and our editor, Tom Knecht; the quality of this publication is due in large part to their efforts. Many people generously provided photographs and illustrations, including Carol Bannerman, Tyler Campbell, Steve Gulledge, Billy Higginbotham, Chris Jaworowski (Alabama Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division), Dana Johnson, Dan McMurtry, Eddie Parham, Rod Pinkston, and the Southeastern Cooperative Wildlife Disease Study. Finally, we benefitted greatly from comments and suggestions on drafts provided by Carol Bannerman, Jerry Belant, Tyler Campbell, Joe Corn, Rob Denkhaus, Stephen Ditchkoff, John Dunlap, Kris Godwin, Bill Hamrick, Ed Hartin, Billy Higginbotham, Skip Jack, Chris Jaworowski, Dana Johnson, Steven Lapidge, Jack Mayer, Dan McMurtry, Gary Moody, Jim Miller, Rod Pinkston, and Ron Regan. Their generous sharing of time and expertise added immeasurably to the accuracy and completeness of this publication.

The mention of commercial products in this publication is for the reader’s convenience and is not intended as an endorsement of those products nor discrimination against similar products not mentioned.

This publication should be cited as:

To obtain additional copies of this publication, please visit www.berrymaninstitute.org/publications, where an electronic copy may be downloaded at no charge. Printed copies may also be ordered at that website for a nominal shipping and handling fee.

ISBN# 0-9742415-1-2
Published by The Berryman Institute
Starkville, MS and Logan, UT

Several cover photos provided by Steve Gulledge and Chris Jaworowski
Editing by Tom Knecht, Words by Tom
Design and Layout by Kathy Jacobs Design & Marketing
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Wild Pigs in North America</td>
<td>3</td>
</tr>
<tr>
<td>Biology and Natural History</td>
<td>5</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
</tr>
<tr>
<td>Physical Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>Breeding and Reproduction</td>
<td>8</td>
</tr>
<tr>
<td>Dispersal</td>
<td>9</td>
</tr>
<tr>
<td>Home Range</td>
<td>12</td>
</tr>
<tr>
<td>Mortality and Survival</td>
<td>13</td>
</tr>
<tr>
<td>Feeding Habits</td>
<td>13</td>
</tr>
<tr>
<td>Wild Pig Damage</td>
<td>15</td>
</tr>
<tr>
<td>Ecological Damage</td>
<td>15</td>
</tr>
<tr>
<td>Agricultural Crops</td>
<td>16</td>
</tr>
<tr>
<td>Livestock</td>
<td>17</td>
</tr>
<tr>
<td>Damage to Forest Restoration</td>
<td>18</td>
</tr>
<tr>
<td>Disease Threats to Humans and Livestock</td>
<td>18</td>
</tr>
<tr>
<td>Swine Brucellosis</td>
<td>19</td>
</tr>
<tr>
<td>Pseudorabies</td>
<td>20</td>
</tr>
<tr>
<td>Classical Swine Fever</td>
<td>20</td>
</tr>
<tr>
<td>Trichinosis</td>
<td>21</td>
</tr>
<tr>
<td>Damage Management Techniques</td>
<td>22</td>
</tr>
<tr>
<td>Legal Considerations</td>
<td>23</td>
</tr>
<tr>
<td>Population Dynamics and Management Strategies</td>
<td>23</td>
</tr>
<tr>
<td>Lethal Techniques</td>
<td>24</td>
</tr>
<tr>
<td>Trapping</td>
<td>24</td>
</tr>
<tr>
<td>Bait</td>
<td>25</td>
</tr>
<tr>
<td>Cage Traps</td>
<td>26</td>
</tr>
<tr>
<td>Door Designs</td>
<td>27</td>
</tr>
<tr>
<td>Trigger Designs</td>
<td>29</td>
</tr>
<tr>
<td>Putting It All Together: Three Trap Designs</td>
<td>29</td>
</tr>
<tr>
<td>Snares</td>
<td>32</td>
</tr>
<tr>
<td>Shooting and Hunting</td>
<td>33</td>
</tr>
<tr>
<td>Aerial Shooting</td>
<td>33</td>
</tr>
<tr>
<td>Night Shooting</td>
<td>34</td>
</tr>
<tr>
<td>Judas Pig</td>
<td>35</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Hunting With Dogs</td>
<td>36</td>
</tr>
<tr>
<td>Toxicants</td>
<td>37</td>
</tr>
<tr>
<td>Nonlethal Techniques</td>
<td>38</td>
</tr>
<tr>
<td>Fencing</td>
<td>38</td>
</tr>
<tr>
<td>Harassment</td>
<td>39</td>
</tr>
<tr>
<td>Vaccination</td>
<td>39</td>
</tr>
<tr>
<td>Contraception</td>
<td>39</td>
</tr>
<tr>
<td>Summary</td>
<td>41</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>43</td>
</tr>
<tr>
<td>Appendix</td>
<td>51</td>
</tr>
<tr>
<td>Authors</td>
<td>54</td>
</tr>
</tbody>
</table>
This manual was written to help people, especially natural resource professionals, who are interested in managing wild pigs (Sus scrofa). However, we expect that it will be read by a wide variety of people, including wildlife biologists, land managers, farmers, hunters, policymakers, academicians, and others. Given this diversity of readership, developing this guide was a balancing act between offering detailed information supported by the scientific literature on the one hand and summarizing as simply as possible what is known about wild pigs and their management on the other. In the end, we are hopeful that the publication is detailed enough to be useful to those with a deep interest in wild pigs but also succinct enough for those simply interested in a comprehensive management resource.

Since their introduction to North America, wild pigs have become one of the more serious wildlife problems in the United States. Conover (2002) opines that the vast majority of wildlife in North America have many positive values that ultimately outweigh the costs of the problems they may cause and thus provide a net benefit to society. From that perspective, wildlife damage management is the strategy of alleviating problems sometimes caused by wildlife while retaining or enhancing their positive benefits. Conover (2002) further explains, however, that a few wildlife species cause problems that outweigh their positive values and should be considered pests. Although we recognize that wild pigs provide recreational benefits to some hunters and landowners (see Rollins...
et al. 2007), one could argue that the scope and severity of problems caused by pigs outweigh their benefits in many areas. In these cases, managers may decide that population reduction or eradication is the preferred management objective, and we created this manual to support such efforts.

While there is a technical distinction between Eurasian wild boars, feral pigs, and their hybrids, all have similar impacts on ecosystems, native wildlife, agricultural commodities, and other resources. Thus for the sake of practicality we use the term "wild pigs" to refer collectively to feral pigs, Eurasian wild boars, and hybrids. Please note, however, the information herein is not intended for management of the collared peccary (javelina; *Tayassu tajacu*), a native inhabitant of the American Southwest, Mexico, and Central and South America.

The body of scientific work regarding wild pigs is impressive, particularly in the arenas of natural history, biology, ecology, and environmental impact. Wolf and Conover (2003) and, more recently, Mayer and Shedrow (2007) have compiled excellent bibliographies for individuals wanting an exhaustive review of all the scientific literature pertaining to wild pigs. Despite this abundance of scientific literature, many questions remain about the effective management of wild pigs, and managers must often invent techniques and strategies on the fly.

Because we intend this as a technical guide for management, we have included both references to the scientific literature and anecdotal information from the field. Many of the management options we discuss have been largely untested by the rigors of scientific investigation, and we expect researchers to continue testing and refining those and other techniques. In the meantime, we recognize that management is both art and science, and both are equally valid and important to individuals interested in managing wild pigs.
Wild pigs are not native to the Americas (Mayer and Brisbin 1991). Pigs are thought to have been first domesticated from the Eurasian wild boar about 8,000 to 10,000 years ago (Barrett 1978, Larson et al. 2005, Minagawa et al. 2005). In addition, new genetic data have revealed a history of widespread multiple centers of independent pig domestications across Eurasia (Giuffra et al. 2000, Larsen et al. 2005). Given their adaptability and ability to survive in the wild, they were a popular livestock for American settlers colonizing new areas and were probably first introduced into the New World by Christopher Columbus in 1493 in the West Indies. In the ensuing centuries, pigs were released throughout the United States, particularly in the southeastern states (Hanson and Karstad 1959, Wood and Lynn 1977, Mayer and Brisbin 1991). Following the initial flurry of releases throughout the 1500s, settlers, farmers, and Native Americans promoted the spread of pigs by open range practices that persisted in some states as recently as the 1960s. By the early 1980s, wild pigs ranged from the Coastal Plain of Virginia south to Florida, and west to Texas and California (Sweeney and Sweeney 1982). Today, though the range of wild pigs appears to be continually expanding, the South remains the epicenter of wild pig populations.

The establishment of Eurasian wild boar populations occurred mostly after the release of domestic pigs into the wild. The establishment of a boar population in the wild likely first occurred when some were brought to North Carolina from Germany in 1912 for hunting purposes.
descendants from this population were later introduced into California in 1925 or 1926 (Bruce 1941, Seymour 1970; Pine and Gerdes 1973). More recently, Eurasian wild boars were introduced into other areas of the United States, and many hybrid populations occur throughout the range of wild pigs as a result of cross-breeding. Pure strains of Eurasian boar reportedly are rare; nevertheless, at least a few small localized populations of pure animals exist in the United States (e.g., Michigan), having originated from farm-raised wild boar brought down from Canada (Mayer 2009).

Today, wild pigs are both numerous and widespread throughout North America. It is exceedingly difficult to conduct population censuses of any species of wildlife, including wild pigs. This difficulty, coupled with ongoing population growth and range expansion of wild pigs, makes it nearly impossible to estimate the number of wild pigs in the United States and to definitively state where they do and do not occur. Regardless, evidence is compelling that wild pigs are abundant in many areas and are expanding their range into areas heretofore not occupied. As early as the 1950s, concentrations of wild pigs in the Southeast were high, though the reported density of 75 to 100 animals per square mile (Hanson and Karstad 1959) was probably unrealistic and a result of poor population estimation techniques. Nevertheless, pigs are numerous, so much so that several decades ago Decker (1978) reported wild pigs to be the most abundant, free-ranging, introduced ungulate in the United States. Mayer and Brisbin (1991) suggested a United States population between 1 and 2 million wild pigs in 1991, but that number quickly became obsolete and the current population is likely much greater; for example, Taylor (2003) speculated that the wild pig population in Texas alone numbered 1.5 million animals.
BIOLOGY & NATURAL HISTORY

Wild pigs are remarkable in the diversity of their physical appearance and behavior. The purpose of this publication is not to provide an exhaustive review of the substantial body of literature on the natural history and biology of wild pigs but to provide sufficient information to understand the basic character of the animal. Readers interested in greater detail about wild pig biology, natural history, and behavior should turn to the excellent summaries by Mayer and Brisbin (1991), Sweeney et al. (2003), and Mayer and Brisbin (2009).

RANGE

Because wild pigs are highly adaptable, suitable habitat occurs throughout much of North America. Since their introduction in the southeastern United States, wild pigs have expanded their range to many other regions of the country, particularly in the past few decades. The Southeastern Cooperative Wildlife Disease Study (SCWDS) has monitored wild pig populations since 1982 and has documented a steady advance into new regions (www.uga.edu/scwds/dist_maps.htm); currently, pigs exist in at least 39 states (Fogarty 2007, Gipson et al. 1998). Although many have presumed that pigs were a southern species and that harsh winters would limit their expansion northward, pig populations now exist in the northerly climates of Michigan and North Dakota.
Wild pigs are numerous and widespread across the country. The Southeastern Cooperative Wildlife Disease Study (SCWDS) has monitored wild pig populations since 1982 and has documented a steady advance into new regions. Recently, SCWDS has created a dynamic mapping system to monitor the expansion of pig populations continuously. For more information, visit www.feralswinemap.org.

The SCWDS has created a dynamic online database to monitor wild pig distribution in the United States (www.feralswinemap.org). Wildlife professionals with state and federal agencies continually provide data for the online database, and it thus represents a potentially valuable tool for monitoring the distribution and expansion of wild pigs in North America. However, the ultimate accuracy and hence value of this tool is dependent upon the participation and input of natural resource professionals nationwide, so they are encouraged to contribute data about pig distribution in their state and region.

PHYSICAL CHARACTERISTICS

Wild pigs come in all colors, shapes, and sizes. Because of their varied ancestry, individual wild pigs vary widely in physical appearance and morphometrics. Although some differences exist among Eurasian wild boars, wild pigs of domestic ancestry, and hybrids (Mayer and Brisbin 1991), these differences are mostly unimportant from a
management perspective and will not be discussed in detail here. Readers interested in more information about the differences in the Eurasian wild boar and other wild pigs should examine Mayer and Brisbin (1991), Mayer and Brisbin (1993), and Sweeney et al. (2003).

Wild pigs most frequently are blackish in color, but individuals may be nearly any color or combination of colors. Eurasian wild boars typically have a coat of brown to black hairs with white or tan distal tips (i.e., grizzled coloration), whereas wild pigs from domestic ancestry are characterized by uniformly colored hair (Mayer and Brisbin 1991). Furthermore, pelage color can be variable throughout the life of an individual. For example, some young wild boars have a striped juvenile coat coloration that disappears with age and changes to the aforementioned adult grizzled coat coloration pattern. In contrast, other wild piglets can have a coat similar in color to that of adults from the same population (Mayer and Brisbin 1991, 1993).

Pigs have 44 permanent teeth, and the development of the upper and lower canines of males are of particular interest (Sweeney et al. 2003). These teeth grow continually and, because of friction between the upper and lower canines, can become quite sharp, particularly the lower canines. These canines, or tusks, can grow to 4 inches or more in length out of the socket (Mayer and Brisbin 1988) and are at the heart of much of the lore about wild pigs. Fighting among rival mature males for breeding opportunities is the apparent evolutionary cause of the size difference seen between the sexes in wild pig tusks (Herring 1972). Such male-male fights can be fierce, and tusk scars are common on the bodies of adult boars.
Individual wild pigs vary widely in their physical dimensions and weight, depending on their ancestry and local environment. As a general rule, males are larger and weigh more than females, but much overlap exists. Average total lengths (measured from the tip of the nose to the end of the fleshy part of the tail) for adult wild pigs range from about 50 to 75 inches, and average weights from about 75 to 250 pounds (Sweeney 1970, Mayer and Brisbin 1991).

Individual wild pigs can grow quite large, depending on available food resources. For example, one pig killed in South Carolina tipped the scale at 893 pounds (Rutledge 1965). Records are challenged quite often, most famously by “Hogzilla,” a supposedly gigantic wild pig shot in southern Georgia. The original Hogzilla was claimed to weigh in excess of 1,000 pounds and be 12 feet in length, but the pig was buried before these assertions could be verified. National Geographic, curious about the outrageous claims, assembled a research team to exhume the carcass and estimate its live size and weight. They concluded that Hogzilla was real, but researchers estimated the live weight to be about 800 pounds and the total length to be between 7.5 and 8 feet (Minor 2005). When such gigantic pigs are reported, it is almost always the result of people feeding captive pigs, growing them to enormous sizes, and then releasing them into the wild.

BREEDING AND REPRODUCTION

Wild pigs are perhaps the most prolific large mammal on Earth. Pig populations can grow rapidly in good habitat, and this population growth and subsequent dispersal can result in pigs quickly colonizing and populating new areas (Waithman et al. 1999). Such impressive growth capability is possible because pigs possess traits that yield high recruitment rates. To a large extent, these traits are an artifact of their domestic heritage, namely that, (1) pigs reach sexual maturity at a young age, (2) females can farrow multiple times a year, (3) females can have large litters, and (4) natural mortality rates often are relatively low. Good habitat conditions can enhance all of these characteristics and result in irruptive population growth (Bieber and Ruf 2005).

Wild pigs are perhaps the most prolific large mammal on earth.

Puberty occurs early in wild pigs, particularly under good habitat conditions. In general, puberty occurs between 6 and 10 months of age (Barrett 1978), although Giles (1980) reported puberty in wild females as young as 3 months. Although females begin breeding as soon as puberty occurs, sexually mature males are often prohibited from breeding by older, more dominant individuals (Barrett 1978).

Wild pigs are physiologically capable of reproducing twice each year, although individuals in most populations produce only a single litter annually (Springer 1977, Taylor et al. 1998). Wild pigs can breed year-round, and farrowing has been observed throughout the year. Nevertheless, most
Wild pig populations have incredible potential for growth. In good conditions, adult females can farrow multiple times a year and produce large litters, and juvenile females can breed at an early age. As a result, pig populations can quickly grow and expand their range.

DISPERAL

Social structures in wild pig populations are characterized by lone males and groups (often called "sounders") of females and piglets. These sounders consist of up to 3 related generations and typically number 8 or fewer individuals with 1 to 3 adults. Piglets normally are weaned around 3 months of age, at which time individual yearling females either remain with the group or begin the process of dispersal. Kaminski et al. (2005) reported that most yearling females (79%) remained with their family group, and this arrangement appears to be an all-or-nothing proposition; female yearlings in a group either all dispersed...
Wild pigs leave field signs that are unique and identifiable, thus making it relatively easy to determine whether wild pigs inhabit an area.

Rooting is the most common and recognizable field sign created by wild pigs.

Pigs create wallows to cool their body temperature and rid themselves of biting insects.

Wild female pigs in southern swamps construct nests or beds by cutting and piling palmetto fronds to protect their young from weather and predation. In other areas leaves, grasses, and twigs may be used and placed over a small depression in the ground.

Wild pigs deposit characteristic scat that is a reliable sign of their presence in an area.
As part of their scent marking behavior, male wild pigs use their tusks to remove the bark and expose the wood of small trees.

Mud rubs on trees are a good indicator of the presence of wild pigs. They rub on trees to remove excess mud from their coats after wallowing. Mud rubs on trees can give you an idea as to the relative size of pigs in your area. Mud rubs that are 3 to 4 feet off the ground indicate the presence of mature pigs.

Tracks left by wild pigs and white-tailed deer often are easily identified. Pig tracks are generally more rounded at the tips of the hooves, and they often display more widely spread dew claws.

Sometimes, though, it can be difficult to distinguish between them. This track, left by a wild pig, could easily be mistaken for that of a white-tailed deer.
or all remained with the family group. Females that disperse usually do so with their sisters and create another family group together. Males essentially always disperse from the family group, usually around 16 months of age (Gabor et al. 1999).

HOME RANGE

Wild pigs are opportunistic generalists with regard to diet and habitat; consequently, their home range size may depend on a number of factors, including habitat quality, food availability, and population density. The average home range size for wild pigs in North America varies from a few hundred to several thousand acres (Kurz and Marchinton 1972, Singer et al. 1981, Baber and Coblentz 1986; Boitani et al. 1994, Hayes 2007, Gaston 2008). Poor habitat quality, limited food availability, and low population density lead to larger home ranges. Human activity can greatly impact home ranges, as pigs reduce movements and home ranges in situations where human activity is high (Wood and Brenneman 1980, Hayes 2007, Gaston 2008).

Within their annual home range, wild pigs are almost nomadic and have seasonal home ranges that may or may not overlap. Gender and age seem to have little impact on the size of wild pig home ranges, although Saunders and McLeod (1999) did report that body mass was positively correlated to home range size in these animals. Although many factors influence the seasonal movements of pigs, food availability is of primary importance, followed by thermoregulation needs. Pigs have no functional sweat glands, so they are sensitive to high temperatures and rely on behavioral adaptations to cope with hot weather. The impact of temperature on seasonal movements is not clear, though some have reported that pigs shift summer home ranges to areas with cooler ambient temperatures and with greater availability of water (Hughes 1985). The impact of temperature on daily movements is much clearer, as thermoregulation greatly influences daily movements and can lead to nocturnal behavior during summer months (Sweeney et al. 2003).

Geist (1977) reasoned that Suids should exhibit territorial behavior, but evidence for such in wild pig populations has been mixed. Some studies have found that female home ranges overlapped, and some have thus concluded that female wild pigs are not territorial (Barret 1978, Graves 1984, Baber and Coblentz 1986, Boitani et al. 1994). More recent studies, though, have hypothesized that while females within a particular sounder are not territorial, sounders as a group do indeed establish and defend territories. Boitani et al. (1994) reported that sounders did not hold territories and instead had overlapping home ranges, whereas Ilse and Hellgren (1995) and Gabor et al. (1999) did document exclusive home ranges and thus evidence for territoriality. Sparklin et al. (2009) specifically studied the territoriality of sounders, and concluded that wild pigs are territorial on the level of sounders but not individuals. Questions yet remain about the
impact of resource availability on pigs’ tendencies toward territorial behavior.

MORTALITY AND SURVIVAL

In most areas and populations, the most significant cause of mortality in wild pigs is hunting. However, because of their prolificacy, wild pig populations in good habitats can endure extremely high rates of hunting harvest (Barrett and Pine 1980), and in most cases hunting alone cannot control populations. Bieber and Ruf (2005) estimated that, in good habitat conditions, adult survival would have to be reduced to <10% to counter population growth. In some cases, hunting has had a significant impact on pig populations (Belden and Frankenberger 1989, Belden 1997), but it is unclear how the impact of hunting mortality interacts with and is influenced by habitat quality. In addition to direct mortality, the effects of high pressure from humans (either hunting pigs or hunting other game) may indirectly reduce survival of pigs, regardless of gender or age (Gaston 2008).

Wild pig populations in good habitats can endure extremely high rates of hunting harvest.

Predation has little impact on most pig populations, although researchers have documented predation by alligators, black bears, and mountain lions (Sweeney et al. 2003). Indeed, in some specific situations, wild pigs can represent a significant prey item, as Maehr et al. (1990) documented in Florida panthers. The impact of disease and parasites on wild pig populations is poorly understood, though it probably can be substantive in specific situations. Disease seems to pose the greatest risk to both young (<6 months) and older (>2 years) individuals, though this, too, is largely speculative (Sweeney et al. 2003).

FEEDING HABITS

Wild pigs are opportunistic omnivores that feed primarily by rooting and grazing, which contributes to their role as a problematic species. Their rooting behavior, in particular, is a principal reason they are considered a pest. Schley and Roper (2003) summarized diet analyses in 21 different articles based on research conducted across 8 European countries and noted that wild pigs will eat almost any organic substance, depending on availability. Sweeney et al. (2003) likewise provided an overview of wild pig feeding studies, all of which reported an incredibly varied diet. Even so, some generalizations can be made. Vegetation certainly dominates pig diets — in volume, ≥85% of wild pigs’ diet is composed of vegetable matter — but animals, both vertebrate and invertebrate, also constitute a regular food item (Schley and Roper 2003). Invertebrates represent prominent food items for wild pigs; insects and earthworms commonly show up in stomach contents. Researchers sometimes find larger mammals in wild pig stomachs, presumably as a result of scavenging. More
commonly, though, pigs consume small mammals and
herptiles, sometimes from scavenging, sometimes from
direct predation (Schley and Roper 2003, Wilcox and
Van Vuren 2009).

Evidence suggests that wild pigs are largely
indiscriminate in their food selection. Some
researchers have suggested that pigs prefer mast when
available, particularly acorns, although others argue
this interannual variation is only reflective of forage
availability, not diet preference (Barrett 1978, Belden
Whatever the case, it is clear that mast constitutes
a very common food item when available and that
its annual availability has a significant impact on the
body condition, reproductive potential, and movement
patterns of wild pigs (Wood and Brenneman 1980,
Some have suggested that wild pigs compete with
other, more desirable wildlife species for mast, but
such competition has not been fully documented
(Sweeney et al. 2003).

Finally, wildlife researchers and managers have
long speculated about the impact of wild pigs on
ground-nesting birds, particularly as it relates to nest
predation. Without question, wild pigs do sometimes
consume eggs and chicks (Thompson 1977, Tolleson
et al. 1993); still, little conclusive evidence exists to
suggest that pigs prefer these or any other food item.
Most likely, pigs consume eggs and chicks at a rate
proportional to incidental encounter, and in areas with
dense pig populations, this incidental consumption
could be problematic. Be that as it may, researchers
are undecided about the impact of wild pigs on
populations of ground-nesting birds. Future research
may bring clarity to this issue.
WILD PIG DAMAGE

ECOLOGICAL DAMAGE

Wild pigs cause problems in North American ecosystems in a variety of ways, largely because these systems did not evolve with pigs and are not adapted for their rooting behavior (Baber and Coblentz 1986). Impacts to ecosystems can take the form of decreased water quality, increased propagation of exotic plant species, increased soil erosion, modification of nutrient cycles, and damage to native plant species (Patten 1974, Singer et al. 1984, Stone and Keith 1987, Cushman et al. 2004, Kaller and Kelso 2006).

Wild pigs are perhaps the greatest vertebrate modifiers of natural plant communities (Bratton 1977, Wood and Barrett 1979, Stone and Keith 1987). Rooting, trampling, and compaction influence plant regeneration, community structure, soil properties, nutrient cycling, and water infiltration (Seward et al. 2004). Wild pigs may induce the spread of invasive plant species because invasive exotics typically favor disturbed areas and colonize more quickly than many native plants (Hone and Pederson 1980, Coblentz and Baber 1987, Stone and Keith 1987). Habitat damage is particularly important in wet areas where plant communities and soils tend to be more sensitive to disturbance. In Florida, wild pigs contributed to the decline of at least 22 plant species and 4 amphibian species listed as rare, threatened, endangered, or of special concern (USDA 2002). Impacts are particularly significant to endangered species.
on islands such as Hawaii where a high number of plant and wildlife species are endemic (Mungall 2001). Recovery of plant communities is sometimes possible after pig populations have been reduced or eliminated, but the species composition of plant communities may be permanently altered.

Pigs can cause problems for native wildlife by competition for resources, direct predation, and the spread of disease and parasites (Hanson and Karstad 1959, Sweeney et al. 2003). Wild pigs may compete with native wildlife for hard and soft mast and many other important food items (Belden and Frankenberger 1989, Yarrow and Kroll 1989). As noted earlier, wild pigs can be significant predators of ground-nesting bird nests (Thompson 1977, Tolleson et al. 1993), although the impact of this predation on the populations of ground-nesting birds is yet unclear. In addition, pigs also prey upon small mammals, salamanders, frogs, fish, crabs, snakes, turtles, and white-tailed deer fawns (Lucas 1977, Hellgren 1993, Jolley 2007, Jolley et al. 2010). In the southeastern United States, wild pigs have become significant predators of sea turtle eggs on mainland and island beaches along the Atlantic coast (Lewis et al. 1996). Specifically, pigs have threatened the nesting success of several endangered turtles including the loggerhead, green, leatherback, hawksbill, and the Kemp’s ridley by destroying up to 80% of nests in some regions of Florida (USDA 2002). Although little scientific literature exists to document the problem, reports from the field indicate that wild pigs have a significant impact on gopher tortoises through habitat degradation and direct predation. This, in turn, may negatively impact Mississippi gopher frogs, eastern indigo snakes, and other species that have a symbiotic relationship with tortoises.

Wild pigs also cause problems in aquatic systems via increased soil erosion and bacterial contamination (Kaller et al. 2007). Wild pig activity in streams has impacted a variety of aquatic flora and fauna, most notably freshwater mussels and insects (Kaller and Kelso 2006, Kaller et al. 2007). Moreover, wild pigs have caused the level of fecal coliforms in some streams to exceed human health standards (Kaller 2005).

AGRICULTURAL CROPS

In addition to impacting ecosystems, wild pigs can damage timber, pastures, and, especially, agricultural crops (Bratton 1977, Lucas 1977, Thompson 1977, Schley and Roper 2003). A conservative estimate of wild pig damage to agricultural crops and the environment in the United States is $1.5 billion annually (Pimentel et al. 2002, Pimentel 2007). Wild pigs cause damage by directly consuming crops, damaging fields by rooting and digging, and trampling crops (Whitehouse 1999). Pigs will travel long distances to consume attractive foods; one study reported that pigs traveled 6 miles to forage on sorghum (Mungall 2001). In a survey of extension agents in Texas, Rollins (1993) found the most common complaint was damage to crops, including hay, small grains, corn, and peanuts. Crops such as vegetables, watermelons, soybeans, cotton, tree fruits, and conifer seedlings were also affected by wild pigs.
In addition to directly damaging crops, pigs can damage infrastructure such as fences, irrigation ditches, roads, dikes, and other structures. Rooting and wallowing in agricultural fields creates holes that, if unnoticed, can damage farming equipment and pose potential hazards to equipment operators (Nunley 1999).

A conservative estimate of wild pig damage to agricultural crops and the environment in the United States is $1.5 billion annually.

LIVESTOCK

Wild pigs sometimes prey on livestock, including lambs, goats, newborn cattle, and exotic game. Predation on young livestock animals usually occurs on calving or lambing grounds where wild pigs may be attracted by afterbirth (Beach 1993). Though predation is usually concentrated on young animals, livestock giving birth are sometimes killed and consumed (Wade and Bowns 1985).

Wild pig predation on livestock can be difficult to verify because the entire carcass is usually consumed, leaving little evidence. In addition, pigs will scavenge carcasses killed by other animals. If the whole carcass is not consumed, however, wild pigs usually follow a characteristic feeding pattern that can be used to identify the source of the damage. They typically kill their prey by biting and crushing the skull or neck (Frederick 1998). The carcass typically will be skinned and the rumen or stomach contents consumed (Wade and Bowns 1985). Obviously, wild pig tracks and scat in the immediate vicinity can help identify incidents of predation.

In addition to directly preying on livestock, wild pigs can cause damage to livestock fencing. Because of their size and strength, wild pigs can damage even robust fences, thus compromising the fence’s ability to contain livestock and exclude predators. Although no one has estimated the economic impact of this damage, it has potential to be significant in terms of fence repair costs and escaped livestock (Beach 1993).
DAMAGE TO FOREST RESTORATION

Hard mast (e.g., acorns and hickory nuts) is an important food source for wild pigs; thus attempting to regenerate hardwoods from seed may be difficult if pigs are present. In areas where mast or fruit have already germinated, rooting activities may dislodge and damage young seedlings. In some areas, rooting significantly reduces oak regeneration (Huff 1977, Sweitzer and VanVuren 2002). Rooting also accelerates decomposition of leaf litter, resulting in a loss of nutrients from the forest floor and upper soil horizons (Singer et al. 1984), which may make it more difficult for seedlings to grow and survive.

Seedlings of both hardwoods and pines, especially longleaf pines, are very susceptible to pig damage through direct consumption, rooting, and trampling (Whitehouse 1999, Mayer et al. 2000, Campbell and Long, 2009). This is problematic in all forests where it occurs, but particularly in longleaf pine forests, an ecosystem already in peril. Longleaf pines dominated about 92 million acres in the United States before European settlement but now occupy less than 3 million acres, mostly in the southeastern region of the country (Landers et al. 1995). The abundant populations of wild pigs across the region have made the restoration and management of longleaf pine forests even more difficult and tenuous.

For some time, wildlife managers questioned whether pigs consumed tree seedlings, given that woody material is seldom found in stomach analyses. However, researchers suspected that pigs chew the roots of seedlings, swallow the sap and starches, and then spit out the woody tissue. To support this idea, researchers have found and documented balls of masticated roots where wild pigs have been rooting among woody plants (Adams et al. 2006).

DISEASE THREATS TO HUMANS AND LIVESTOCK

Wild pigs are capable of carrying numerous parasites and diseases that potentially threaten the health of humans, livestock, and wildlife (Forrester 1991, Williams and Barker 2001, Sweeney et al. 2003). Humans can be infected by several of these, including diseases such as brucellosis, leptospirosis, salmonellosis, toxoplasmosis,
Wild pigs can harbor many diseases that are dangerous to humans, livestock, or other wildlife. The presence of wild pigs in an area can make it difficult or impossible to eradicate certain diseases from livestock and humans in areas with wild pigs (Hone et al. 1992, Corn et al. 2005, Hutton et al. 2006, Wyckoff et al. 2009). The role that wild pigs could play in spreading and perpetuating exotic diseases that may emerge in the future is particularly troublesome. For example, foot-and-mouth disease, which was eradicated in the United States in 1929, would be essentially impossible to eradicate again if it reemerges in areas with wild pigs. If foot-and-mouth disease were to reemerge in the United States, it would result in a reduction of $14 to 21 billion in United States farm income (Paarlberg et al. 2002).

Because of the myriad of viruses, bacteria, and parasites that wild pigs carry and can infect humans, individuals should take precautions to protect themselves from infection when handling them, including either live animals or carcasses. Surgical gloves should always be worn and probably offer sufficient protection for the hunter who handles a pig or two every year. However, the wildlife professional who handles a large number of pigs may opt for more substantive protection, including perhaps a surgical mask, gown or coveralls, and eye protection. At the very least, agencies and organizations involved with the management of wild pigs should educate their employees about the risks of zoonotic diseases, establish protocols for handling these animals, and determine minimum requirements for personal protective equipment when doing so.

A comprehensive discussion of important diseases relative to wild pigs is beyond the scope of this publication. Nevertheless, the following paragraphs provide basic information about a few diseases that hunters, landowners, and farmers commonly inquire about or should be aware of. Those interested in a more detailed and technical summary of disease implications of wild pigs should reference the articles by Davis (1993), Corn et al. (2005), Hutton et al. (2006), and Stallknecht and Little (2009), or the myriad of articles available in the *Journal of Wildlife Diseases*. In addition, the field guides by Davidson and Nettles (1997) and Davidson (2006) provide a broad overview of the causative agents, field signs, and other important aspects of many diseases in wild pigs.

Swine Brucellosis
Swine brucellosis is caused by the bacterium *Brucella suis* and should not be confused with bovine brucellosis, or the diseases found in goats.
and dogs caused by other Brucella spp. bacteria. This is primarily a reproductive tract disease that causes abortion, stillborn or weak piglets, infertility, inflammation of the testicles, and lameness. Infected animals are long-term carriers. Chronic infection can produce shrunken testicles. Sows can develop small abscesses in the uterine lining that can lead to pus exudate in the uterus. Aborted fetuses often look normal, but the afterbirth may show blood clots and hemorrhages. Transmission of swine brucellosis occurs through ingestion of recently discharged bacteria in aborted fetuses, urine, and semen or via sexual contact (Davidson and Nettles 1997, Davidson 2006).

Swine brucellosis has been found in multiple populations in Arkansas, Alabama, California, Florida, Georgia, Hawaii, Louisiana, Mississippi, South Carolina, and Texas but is likely not limited to these states. The domestic swine industry has endeavored to eradicate brucellosis within domestic populations, but this endeavor is hindered by contact with infected wild pigs (Davidson and Nettles 1997, Davidson 2006).

Human infection by Brucella bacteria is possible and not uncommon. Health officials in Florida, for example, documented that 8 of 10 human cases of brucellosis in 2007 were linked to wild pig hunting activities (Florida Department of Health 2008). Humans with the disease typically have flu-like symptoms including intermittent fever, headaches, muscle and joint soreness, and weakness. Though few humans die of infection, the disease is often chronic and debilitating. Hunters should wear rubber gloves and wash with soap as soon as possible after handling a carcass and also ensure the meat is cooked thoroughly before consumption (Davidson and Nettles 1997, Davidson 2006).

Pseudorabies
Infection of pseudorabies, a disease caused by a herpes virus, in wild pigs is common throughout their range in the United States (Stallknecht and Little 2009). In domestic pigs, this disease produces clinical signs that vary from unnoticeable to fatal infections; in wild pigs, though, pseudorabies rarely results in disease or mortality (Stallknecht and Little 2009). When disease develops, young pigs are most severely affected and often display fever, vomiting, tremors, incoordination, convulsions, and death in most piglets less than 4 weeks old. Adult pigs usually survive but can have fever and upper respiratory tract inflammation. Of particular importance to domestic swine producers, infection in pregnant sows results in abortion or mummified fetuses. In domestic and wild mammals other than swine, the virus produces an acute infection of the central nervous system that produces a loss of appetite, depression, staggering, spasms, and a death rate of nearly 100%. Also known as “mad itch,” pseudorabies infections can cause self-mutilation through persistent scratching, biting, or rubbing (Davidson and Nettles 1997, Davidson 2006).

The virus is spread through nasal or oral secretions, particularly in stressed animals, and through the genitalia. In wild pigs, transmission seems to occur mostly through sexual contact (Romero et al. 2001). Ingestion of infected carcasses can also result in transmission. Other animals that become infected usually die from the disease, which can include cattle, sheep, horses, dogs, cats, foxes, raccoons, skunks, rats, and mice (Davidson and Nettles 1997, Davidson 2006).

Millions of dollars are spent annually to detect and prevent pseudorabies in domestic swine. Because many individuals in wild populations are latent carriers, relocation of wild pigs without appropriate testing threatens to spread the disease and is thus, in most states, illegal. Even in domestic herds, control of pseudorabies is difficult; in wild populations, control of the virus is essentially impossible. Thus the most rational strategy to manage the impact of pseudorabies is to eliminate the transport of live wild pigs and to reduce or eradicate their populations.

Classical Swine Fever
Also commonly known as hog cholera, classical swine fever is a viral disease once prevalent among domestic swine in the United States; however, it was eradicated in the 1970s (Nettles et al. 1989). Affected animals become lethargic, feverish, and lose their appetite.
Vomiting and diarrhea cause animals to become weaker and weaker. This disease generally progresses rapidly, and infected animals usually die 10 to 20 days after exposure. Convulsions may occur in the terminal stage. Chronic infections with milder symptoms can occur, with recovered pigs becoming virus carriers (Davidson and Nettles 1997, Davidson 2006).

Because of its eradication in the United States, classical swine fever is considered a foreign animal disease and must therefore be reported to state or federal animal health authorities for diagnostic investigation. This virus is easily transmitted from pig to pig by direct contact and can also be spread by exposure to contaminated pens, trucks, or feeders (Davidson and Nettles 1997, Davidson 2006).

Trichinosis

Trichinosis is caused by a nematode, or round worm, parasite. Infected wild pigs and other animals rarely show definitive signs of infection. A variety of animals are susceptible to trichinosis, including wild pigs, bears, wolves, wolverines, raccoons, foxes, rats, and birds. Hosts become infected by eating larvae in the muscle of infected animals. Adult worms live in the intestinal tract, and the larvae form cysts in muscle tissue. More larvae can be found in the most active muscles of the body, including the tongue, diaphragm, jaw, and intercostal muscles. The larvae remain viable for years within muscle tissue until ingested and passed on to the next animal. While trichinosis does not produce illness in wild pigs and other infected animals, it is an important disease because of human infections that cause severe flu-like symptoms and potentially lead to death (Davidson and Nettles 1997, Davidson 2006).

In the past, most cases of trichinosis in humans were caused by consumption of undercooked domestic pork products. However, the incidence of trichinosis in domestic stock has been greatly reduced in recent years due to improved husbandry practices. In wild pigs, though, trichinosis still occurs commonly. As a result, all meat should be handled with gloves and cooked to an internal temperature of 170°F Fahrenheit to prevent human infection.
DAMAGE MANAGEMENT TECHNIQUES

Although several methods can be used to control wild pig populations, individuals with experience in wildlife damage management recognize that many options within the standard suite of management techniques are either unsuitable or ineffective for pigs. Nevertheless, several effective lethal and nonlethal methods exist. Managers must consider their management objectives when deciding which strategies to pursue and which techniques to employ.

Nonlethal methods include exclusion devices such as fences, guard animals to protect livestock, and vaccinations to prevent disease spread. However, guard animals are generally not practical for use against wild pigs in large, brushy pasture situations like the sheep and goat country of Texas (Littauer 1993), and vaccinations are not yet ready for widespread use. Frightening devices are ineffective, and there are no chemical repellents or toxicants registered for wild pig management in the United States (Barrett and Birmingham 1994), although many researchers are trying to develop such options. Habitat manipulation is impractical given the adaptability of the species.

Most strategies to manage damage caused by wild pigs involve lethal control. Lethal methods include trapping, shooting, and hunting with dogs. The efficacy and feasibility of each of these methods is dependent upon the terrain, available labor and funding, and the management objectives.
Certainly, the vast majority of successful efforts to control wild pigs in the United States involve shooting, trapping, or some combination of these methods, and thus these techniques will be described in greatest detail.

LEGAL CONSIDERATIONS
Obviously, individuals interested in managing wild pigs should understand the laws and regulations relevant to their locale. The wild pig problem has evolved rapidly over the past decade or two, both in terms of the pigs’ distribution and abundance and in our understanding of the issues. This rapid evolution and increasing complexity, coupled with the fact that wild pig management falls within the jurisdiction of individual state governments, have resulted in a plethora of laws unique to each state, and those laws are rapidly evolving. From a national perspective, the laws and regulations governing the management of wild pigs are complicated and dynamic. As a result, it is not possible in this publication to outline what can and cannot legally be done to control wild pigs. Indeed, any attempt at such an accounting would quickly be rendered obsolete as states continue to form new laws and regulations in an attempt to manage wild pigs and the problems they cause.

Still, some generalizations about the management of wild pigs can be drawn. Typically, state wildlife agencies have jurisdiction over wild pigs, although such authority is held by the agricultural commission in some states. In either case, these agencies generally recognize wild pigs as problematic and in need of intensive management. As a result, state regulations generally make it relatively easy for individuals to conduct pig control activities, especially on private property. Nevertheless, readers should contact the appropriate state wildlife and fisheries agency or agricultural commission with questions about wild pig management in their state. It is also important to monitor changes in regulations throughout the year, as many states are continuing to experiment with rules to encourage and promote pig control.

POPULATION DYNAMICS AND MANAGEMENT STRATEGIES
It can be helpful to understand population dynamics of wild pigs while designing and implementing control strategies. Using population modeling, Bieber and Ruf (2005) illustrated the influence of habitat quality on the population growth of wild pigs and thus the likelihood of population control. As mentioned earlier, environmental conditions such as food availability and climatic conditions greatly influence the reproductive capacity of wild pigs, particularly the reproductive capacity of juvenile females. As such, habitat quality has great influence on the potential for population reduction and should be considered when developing and implementing management programs.

In areas with poor habitat and limited food availability, juvenile females generally do not breed. Thus, adult mortality strongly influences the size and growth of wild pig populations in these situations.
In such poor habitat, management programs such as recreational hunting that remove mostly adults have the potential of successfully reducing the population. This may explain why, in some situations, recreational hunting alone has resulted in low pig populations (Belden and Frankenberger 1989, Belden 1997).

The greatest challenge for managers interested in controlling wild pigs occurs in areas with good habitat conditions and abundant food. In these areas and during periods of particularly abundant food (such as during good mast years), juvenile breeding can contribute more to population growth than that of adults (Bieber and Ruf 2005). Under these conditions, even a mortality rate of 90 to 100% of adult females may not cause a population decline, as reproduction in juvenile females would be sufficient to sustain the population. As a result, recreational hunting, which normally removes mostly adult pigs, is usually ineffective as a population control method in good habitat (Hanson et al. 2009). Under such good habitat conditions, managers will have to focus on removing both adults and juveniles, as this is likely the only way to affect a population reduction.

Another implication of the population dynamics of wild pigs is that supplemental food sources can affect management efforts. In areas where supplemental food is consistently available year to year — either in the form of agricultural crops or feed meant for livestock or other wildlife — it can be exceedingly difficult to remove enough animals from an established pig population to induce a population decline. In these situations, land managers may have to couple pig removal with long-term changes in land use or feeding practices to achieve success in reducing populations of wild pigs.

Although population eradication often is a best-case scenario, it is challenging to accomplish in most situations because of pigs’ reproductive capacity, immigration from surrounding areas, and difficulty of finding and removing the last few remaining individuals (Hone 1983, Saunders and Bryant 1988, Choquenot et al. 1993). Nevertheless, eradication of wild pig populations has been accomplished in some areas by using a combination of removal strategies (Schuyler et al. 2002, Cruz et al. 2005, McCann and Garcelon 2008). Eradication efforts probably have greatest opportunity for success in areas where pig populations are just beginning to become established or on islands (Schuyler et al. 2002, Cruz et al. 2005). Even in the absence of eradication, aggressive control programs can result in significant depopulation, which would solve many problems caused by wild pigs (Hone 1983). In Texas, for example, efforts to reduce the population sizes of wild pigs over 2 years resulted in a 66% decline in damage to agricultural crops and pastures (Higginbotham et al. 2008). In any depopulation program, it is important to conduct ongoing population surveys to assess the success of the program and the degree of population reduction (Richardson et al. 1997).

LETHAL TECHNIQUES

Trapping

Trapping is the most popular method for removing wild pigs from a population, and trapping programs — followed by euthanasia, not relocation — can reduce population density. Choquenot et al. (1993) found that an intense trapping program can reduce populations by 80 to 90%, but that some individuals are resistant to trapping; thus, trapping alone is unlikely to be successful in entirely eradicating populations. Unfortunately, little scientific literature exists to document which trap types and designs are most effective. Without a doubt, like most trapping, pig trapping is more art than science, and managers initiating a pig control program will quickly develop their own preferences and opinions. To that end, this section provides an overview of trapping strategies and techniques that managers can draw upon and apply in their own unique situations.

In general, cage traps, including both large corral traps and portable drop-gate traps, are most popular and effective, but success varies seasonally with the availability of natural food sources (Barrett and...
Birmingham 1994). Cage or pen traps are based on a holding container with some type of a gate or door (Mapston 1999). Snares can also be effective but should be used cautiously in areas where livestock, deer, or other nontarget animals are present. Access points such as fence underpasses or pen entrances not used by nontarget animals are ideal locations for snares.

Pig trapping is more art than science.

Though traps can be effective and are probably the most common and preferred tactic for pig removal, managers should understand some potential problems associated with using them. Traps can be heavy and cumbersome, may entrap a variety of nontarget animals, and may elicit trap shyness among wild pigs. In addition, when several animals are caught, some may climb on top of others and escape over the side if the trap has no roof or other design feature to minimize this occurrence (Mapston 1999). Furthermore, pigs may not be attracted to bait when natural sources of food are abundant, and trapping during these times can be ineffective. For example, Barrett and Birmingham (1994) documented that capture success is low during periods of heavy acorn production. Despite these problems and limitations, trapping is probably the most important tool in managers’ arsenals for controlling wild pigs, and proper design can minimize many of these problems.

Bait

Many food items can be used for attracting wild pigs to traps or shooting sites. Shelled corn is likely the most popular choice, as it is effective and widely available, but reports from the field suggest that nontarget animals often find and consume the corn before pigs do. Since pigs are such generalist feeders, other food items that are perhaps less attractive to nontarget species can be used as bait. Carrion and sour grain are common selections; fermented corn or soybeans, in particular, are a favorite among many field biologists. Although these items are messier to work with than corn, they can reduce the attraction of nontarget animals to bait sites. In addition, some managers have developed mechanical feeding devices to reduce the consumption of corn by smaller nontarget animals like raccoons and wild turkeys.

A popular baiting device is a roll barrel, which is simply a large barrel (typically a 55-gallon drum) or section of large (8 inch or greater diameter) capped PVC pipe with multiple small holes (commonly 1 inch in diameter) distributed throughout and filled with corn or other pellet-type bait. Pigs are large and strong enough to move the barrel and thus extract corn from the barrel, while smaller animals are unable to do so.

Prebaiting can significantly increase the effectiveness of both trapping and shooting programs and should usually be considered standard practice when initiating a trapping program. Locking open the door of a trap and feeding bait for a period before
setting the trigger increases visitation to the trap and
the likelihood of multiple captures (Mapston 1999).

Placement of the bait within the trap relative
to the location of the trigger mechanism can be
important, too. Some trappers advocate placing
small amounts of bait in and around the door
area, leading to larger quantities of bait around
the trigger mechanism and as far from the door as
possible. However, other trappers prefer just the
opposite strategy: placing relatively large amounts
of bait near the door with small amounts around
the trigger mechanism. The rationale of this latter
strategy is to maximize the opportunity for capturing
larger numbers of pigs in a single trapping event.

Theoretically, the larger amounts of bait near the door
will attract the first few individuals without triggering
the door, while following individuals will go to the
remaining areas with feed around the trigger, thus
making it possible to capture the entire group.

Cage Traps

Cage traps are by far the most common type of trap
used to capture wild pigs. Stationary corral-type
traps and more portable box traps have long been
used for wild pig control with good success. Many,
many different trap designs have been invented and
promoted, and each trap inventor is likely convinced
his or her design is superior to all others. In reality,
however, several designs have been effective, and
the exact design specifications are probably not as
important as a few key principles.

First, when possible, traps should be large enough
to trap and hold multiple pigs. The construction
and maintenance of these stationary traps requires
a significant investment in time and resources, and
the ability to remove multiple pigs with each trap
armament makes that investment more cost effective.
Although mobility is sometimes important and may
require smaller traps that are easy to move from site
to site, the general rule for pig traps is that bigger is
better.

Second, the trap must be sturdy enough to
contain pigs once capture occurs. Adult pigs are large
and powerful, and trap materials and construction
techniques must be able to withstand the forces
exerted by captive animals. At a minimum, side panels
should be constructed of 4-gauge welded fencing or
its equivalent (typically sold at farm suppliers as cattle
or hog panels). The trap should be anchored, at a
minimum, with steel fence posts, and the framework
should be made of material equivalent in strength to
2x4-inch or, better still, 4x4-inch dimensional lumber.
Doors should be constructed of material equivalent
in strength to ¾-inch plywood or greater. In areas
with particularly large pigs, even heavier materials
should be used for gates and frames (Barrett and
Birmingham 1994). Though wood certainly has been
used successfully as a construction material for traps,
steel is the better alternative for both strength and
long-term durability.

Third, in most cases, delayed triggers should be
used so multiple pigs can enter before the door trigger
is engaged, thus increasing the probability of capturing
multiple pigs each time. Two trigger designs that allow
this are typically used — root sticks and trip wires —
and they are described in greater detail later in
this section.

Finally, traps should be designed so that pigs
cannot escape by jumping or climbing. One method to
prevent escape is the installation of a wire top (Barrett
and Birmingham 1994), but this can cause unwanted
mortality when deer, bears, or other nontarget animals
are captured. In areas where capture of deer is a
concern, the sides of the trap should be constructed
of fence panels about 6 feet in height, which will
enable most deer to escape while containing most
pigs. In rectangular traps, pigs often congregate in the
corners, thus providing an opportunity for individuals
to climb on the backs of other pigs and escape over
the top, even when using 6-foot or higher walls. To
combat this problem, many managers advocate the
construction of circular traps because pigs are less
likely to congregate and thus escape by climbing out.
A final option is the installation of “jump bars,” which
are simply 4 bars installed parallel with the top edge
of each trap panel. The bars are placed approximately
Adult pigs are large and powerful. Trap materials and construction techniques must be able to withstand the forces exerted by captive animals.

Jump bars are an effective tool to prevent pigs from escaping from rectangular cage traps. Four bars are installed a few inches away from the 4 top edges of the trap, and the intersections above each corner prevent animals from escaping from the backs of their fellow captives.

In addition to large, stationary, corral-type traps, portable traps have been used effectively and can be moved from one area to another. These traps can be useful where wild pig occurrence is intermittent, when managers want to transport live pigs to another location, or when the terrain makes the installation of corral traps difficult (as in rocky soils where it is hard to install t-posts).

Often, the activities involved with setting up traps will push wild pigs into less disturbed areas. Adequate time should be given for them to return to the area before giving up and moving the traps to new locations. The best placement for all traps is in areas of high use, with signs like well-worn trails and wallows. When in operation, traps should be checked daily to be reset and rebaited when necessary. Loose barbed wire fencing around the outside of traps can help prevent livestock from entering and will protect bait material from some nontarget animals. When trapping is not occurring, trap doors should be locked open to prevent the accidental entrapment of nontarget animals and to perhaps allow resident pigs to become accustomed to an open trap.

Door Designs

An essential element of all cage traps is a door that allows pigs to enter the trap and, upon activation of the trigger, prevents 6 inches inside the trap edge and serve as a barrier to pigs attempting to climb out the top of the trap. In order to keep the bars secured in place, they are connected to each other at the four intersecting points by a pin or wire. Jump bars have proven quite effective at preventing escape from rectangular traps (personal communication, J. Dunlap, USDA/APHIS/Wildlife Services biologist, Florida).

In addition to large, stationary, corral-type traps, portable traps have been used effectively and can be moved from one area to another. These traps can be useful where wild pig occurrence is intermittent, when managers want to transport live pigs to another location, or when the terrain makes the installation of corral traps difficult (as in rocky soils where it is hard to install t-posts).

Often, the activities involved with setting up traps will push wild pigs into less disturbed areas. Adequate time should be given for them to return to the area before giving up and moving the traps to new locations. The best placement for all traps is in areas of high use, with signs like well-worn trails and wallows. When in operation, traps should be checked daily to be reset and rebaited when necessary. Loose barbed wire fencing around the outside of traps can help prevent livestock from entering and will protect bait material from some nontarget animals. When trapping is not occurring, trap doors should be locked open to prevent the accidental entrapment of nontarget animals and to perhaps allow resident pigs to become accustomed to an open trap.

Door Designs

An essential element of all cage traps is a door that allows pigs to enter the trap and, upon activation of the trigger, prevents
Wooden sliding doors like this one are easy to construct and work very well as part of any corral-style trap.

The design of lift or rooter gates allow pigs to lift the door and enter the trap while preventing captured pigs from escaping.

Swing doors pivot toward the inside of the trap, are held open with a trigger mechanism, and close with the aid of a spring mechanism. Once closed, the spring mechanism and design keep the door closed and prevent pigs from exiting the trap.

Fall doors are initially suspended via a trigger line. Once triggered, gravity causes the door to slide or swing, thus entrapping individual pigs.

Lift or rooter doors exploit pigs’ rooting tendency to create 1-way entries into traps. These doors are hinged at the top and tilted inward to the interior of the trap to allow pigs to root underneath the door and enter the trap, but not exit. Often, these doors are engineered to operate as a hybrid and incorporate the action of both fall and lift doors. Initially, the door is held open and suspended by the trigger line. Once the door is triggered and falls, however, it operates as a lift door and continues to allow pigs to enter the trap but prevents pigs from leaving.

As noted above, adult wild pigs can be large and strong. All components of the trap must be able to withstand the forces exerted by these animals, and this is especially true of the door mechanism. Doors can be easily built with dimensional lumber, but the most robust mechanisms are custom fabricated from steel to the

Swing doors

Fall doors

Lift or rooter doors
specifications of the trapper. For those managers not able or willing to pursue the construction of custom trap door mechanisms, commercial products are available from a variety of sources, mostly from small welding or machine shops scattered across the country. An example is the "hog slammer” swing door offered by Southern Outdoor Technologies, LLC (www.sportsmanscondo.com). Another company, Younger Bros. (www.younger-bros.com), offers a variety of commercial doors and traps. Readers interested in finding a local source for premade trap doors should contact others in the local area already involved with a pig trapping program; a local fabricator may already be making and selling doors or other trap components. If not, most welding or machine shops could construct such doors with simple plans and instructions.

Trigger Designs
Managers typically use 1 of 2 primary trigger designs when constructing traps: the root stick and the trip wire. In both cases, the trigger causes a line to be pulled, which causes the door to fall or swing closed. The root stick trigger design uses a stick wedged underneath holding stakes in or around the bait. The root stick is triggered as pigs in the act of feeding and rooting (hence the name "root stick") push the root stick out from underneath the holding stakes and allow the door to fall.

The trip wire is the more sensitive of the 2 designs and can be triggered with relatively little pressure. Many derivations of the trip wire exist, but it is essentially a line or wire suspended just above the ground with a triggering device that releases and allows the door to close when pressure is exerted on the line.

Deciding which triggering device to use is largely a matter of personal preference and trial-and-error experimentation. Some trappers swear that the root stick is the better approach, as it takes some time for pigs to trip the device and presumably allows more individuals to enter the trap and be captured. Others, however, have cited evidence that root sticks have a low capture rate and thus prefer trip wires as a triggering device (personal communication, C. Betsill, USDA/APHIS/Wildlife Services biologist, North Carolina). In either case, the triggering device should be placed on the opposite side of the trap from the door, which should provide some delay in tripping the trigger and allow as many individuals as possible to enter the trap and be captured.

Putting It All Together: Three Trap Designs
Within the scope of this publication, it is impossible to describe all the various trap designs for wild pigs; there are likely as many designs as there are individuals involved with trapping. Readers interested in exploring these possibilities need only search the Internet for "feral hog traps" or "wild pig traps" to find pictures and diagrams of traps with a wide range of sizes, configurations, and construction techniques. Instead of attempting to reflect that diversity here, we highlight 3 designs that should satisfy the needs of anyone interested in trapping pigs by showcasing one that is quick, easy, and cheap to construct; one that is
A trip wire in conjunction with a sliding trap door is a relatively simple mechanism that can be constructed from few materials. Every trapper has a different approach to constructing the trip wire, and many different configurations can work.

Also notice in this diagram the baiting strategy employed, which can be used for both trip wires and root sticks. By scattering bait heavily just inside the entrance and more lightly around the trip wire, the trapper increases the likelihood of having multiple pigs enter the trap before tripping the door. If bait were placed only around the trip wire or root stick, the first individual in would go directly to the bait and trip the door, thus leaving less time for other pigs to enter.
portable; and one that is large, complex, and expensive but very effective.

Design 1: The so-called *poor-man’s special* is the essence of a simple and cheap pig trap. It is a 3-sided wire trap rigged with a wooden drop door. This trap can be constructed for little money, built by those with limited construction or fabrication skills, and moved relatively easily from site to site. The trap can be constructed using only 3 heavy-duty wire cattle panels, a dozen or so t-posts for reinforcement, and a homemade wooden drop door outfitted with either a root stick or trip wire triggering device. Although cheap and easy to build, this trap can capture several pigs at a time and does a reasonably good job of holding them securely, although some animals may escape at the corners by piling on their fellow captives and hopping out from their backs. With just a bit more time and effort, this trap can be constructed in a circular shape instead of a triangle and thus reduce the likelihood of crowding into corners and subsequent escape. All in all, this trap is a good choice for the landowner or managers just embarking upon the practice of wild pig trapping and is easily modified as needs and conditions change.

Design 2: The *portable cage trap* is a significant step up from the poor-man’s special in terms of construction cost and complexity. Typically consisting of a welded steel frame and heavy wire panels, its construction is beyond the reach of those without significant fabrication skills. Those in need of such a trap may have to contact a local welding or fabrication shop about constructing one or buy one of the several commercially available units; again, a quick search on the Internet will yield many buying options. One of the traps displayed here features a spring-operated swing door, while the other incorporates a rooter door. These smaller box traps will not allow capture of as many individuals as a larger corral-type trap, but they are highly portable and can easily be moved around from site to site, a vital characteristic for some managers. In Texas, traps like this are used to transport live pigs from the trapping location to various collection points, where the pigs are butchered and the meat sold to niche restaurants and markets.
Design 3: The *large corral trap* outfitted with a robust door mechanism, such as the Kerrville Rooter Gate with Missouri Trigger, represents a top-of-the-line trap design. It is big enough to capture a large group of pigs, has a dual-function door that serves as both a fall door and, once triggered, as a lift door, and is robust enough to withstand any forces exerted on it. The unique door design functions first as a fall door that enables the capture of many pigs simultaneously. Once tripped, the door allows other pigs to root underneath and enter the trap but prevents captured pigs from leaving. In addition, the unique door is composed of 3 pieces so that smaller pigs, which would otherwise be unable to lift such a large door, can also root into the trap. Construction of such a door requires fairly complicated fabrication, however, so some managers may opt for a simpler design or choose to purchase one of the many offerings on the market. The rest of the trap, however, could be assembled by most individuals in a few hours. See the appendix for complete construction details for this trap.

Snares

Although probably not as widely used as some other tools, snares can be useful in specific situations, such as in rough terrain, where cage traps are impractical, or in scenarios where pigs grow wary of other trapping techniques. Furthermore, snares have distinct advantages over cage traps in the arenas of cost and portability. For these reasons, leg or, more typically, neck snares are often the tool of choice for wildlife managers. In Texas, for example, neck snares are the second-most-popular removal tool used by USDA/APHIS/Wildlife Services, ranking only behind aerial shooting.

Managers interested in using snares to remove wild pigs should note that snares set on land are not legal in many states. Individuals should check with local conservation officers to ascertain the specific legality of snares in their states as well as to inquire about the necessity of permits or licenses. Even when legally permissible, snares should be used with caution in areas where livestock, deer, and other nontarget species are present.

An ideal application for neck snares occurs under fences where wild pigs are accessing areas or on trails that pigs are traveling extensively. These areas can be identified by tracks and drag marks on the ground, hair on the fences, or arched-up
spots along the fences. Snares generally consist of a loop of galvanized aircraft cable 3/32 inch or 1/8 inch in diameter. The loop closes easily but will not open because of a sliding lock device. For minimum twisting and breakage, a heavy swivel should be used on the tie end of the snare to connect it to an anchor or drag (Mapston 1999). If a drag is to be used, the snare should be fastened to something fairly heavy, such as an oak limb 6 to 12 feet or more in length. The larger the pigs in the area, the larger the drag and heavier the cable needed (Barrett and Birmingham 1994).

Shooting and Hunting

Aside from trapping, shooting is likely the most common technique used to control wild pig populations. Shooting may occur within the context of recreational hunting, or it may be conducted by professionals as part of an intentional control program. In either case, shooting programs must be intense and consistent to reduce wild pig populations and associated damage effectively. Even then, shooting programs usually are most effective when combined with other efforts such as trapping.

Sport hunting can be used as a source of revenue for landowners and recreation for hunters and it may even appear to be an attractive control option to some wildlife managers. Nevertheless, sport hunting usually has little effect on the size of wild pig populations (Barret and Stone 1993). Sport hunting typically results in the removal of mostly adults, and this alone may not be enough to reduce the population (Bieber and Ruf 2005). In addition, hunting pressure can cause pigs to shift movements to cover and to develop more nocturnal feeding habits, thus resulting in a low hunter success rate (Barrett and Birmingham 1994). Moreover, sport hunting may actually be detrimental in areas where trapping occurs, as the hunting pressure may cause pigs to shift away from the area, become more wary, and become less susceptible to trapping (Richardson et al. 1997).

Aerial Shooting

Aerial shooting is another option that can be extremely effective in some areas (Hone 1983). In fact, aerial shooting is perhaps
the preferred control technique in landscapes such as those in Texas, which features low-growing vegetation, gentle topography, and a mild climate. In such areas, aerial shooting is so effective that, despite the high costs associated with aircraft, it can be the most cost-effective option, particularly when pig populations are high. As pig populations decline, however, aerial shooting produces diminishing returns and probably is not cost-effective at low population densities (Choquenot et al. 1999). In other areas, weather, heavy cover, and rough terrain limit the applicability of aerial shooting.

Sport hunting usually has little effect on the size of wild pig populations.

Night Shooting

When shooting over bait, the most effective approach is to conduct removal operations after dark with night vision technology and sound-suppressed weapons; before initiating this type of effort, though, be certain to check local and state regulations. In many states, agencies responsible for wild pig regulations will allow night shooting, and sound-suppressed weapons can be acquired under special permit. For shooting over bait, several days to a few weeks of prebaiting before shooting can greatly enhance the success of the removal operation.

Night shooting operations exploit the tendency of pigs to become nocturnal in response to human pressure and high temperatures, and they allow managers to use the cover of darkness. However, traditional night shooting approaches — shooting with a spotlight and conventional weaponry out of vehicles — offer many challenges and simply do not work well for wild pigs in most situations.

Fortunately, though, new technological developments have resulted in night vision equipment that greatly enhances the success of night shooting operations. Technical advances in night vision equipment derived from military training are now being applied to wild pig control in the United States. Two types of equipment are available: systems that use near-infrared light and systems that use thermal imaging (Pinkston, unpublished report).

Systems that use near-infrared light have existed longer, and many people will recognize them by the characteristic greenish images they produce. Early versions of this equipment produced images with poor resolution, but newer equipment is remarkably clear. These devices work by collecting and amplifying visible light, including a portion of the infrared light spectrum otherwise undetectable to our eyes (Pinkston, unpublished report).

Thermal imaging works by capturing the portion of the infrared light spectrum that is emitted as heat by objects. Hot objects, such as warm-blooded animals, emit more light and show up as white when viewed in gray scale. Since this equipment works solely by capturing infrared energy from an object, no light at all is required for the device to function. Warm objects stand out against cooler backgrounds and become visible. Since the average body temperature of wild pigs is 102°F, they are easily detected while feeding in surroundings that have cooled to nighttime temperatures. Currently, the best thermal devices on the commercial market can detect these heat sources from more than 0.5 mile away (Pinkston, unpublished report). As these technologies improve, the devices are becoming smaller and more practical for commercial use. However, the price of night vision equipment, particularly of the thermal imaging type, is currently prohibitive for most landowners.

Using such equipment for night shooting, it may be possible to eliminate entire sounder groups feeding at night in open terrain. By using the cover of darkness, shooters can approach quite closely to groups of wild pigs. Shooters should target adults for initial shots and removal as juveniles offer easier follow-up shots once shooting commences. When the team consists of experienced shooters equipped with semi-automatic rifles, such operations can remove all
Using thermal imaging at night, hunters can approach pig groups closely and optimize shooting opportunities.

or most of the individual pigs in the field. Although the number of animals that can be removed with this technique is impressive, research has yet to assess the cost efficacy of this approach or its ability to reduce pig populations within a larger area. Increasingly, though, this is a preferred tool for biologists conducting disease surveillance, as it allows the sampling of pigs across a broad geographic area without the investment of time that would be required to set up traps in multiple locations.

Judas Pig
The “Judas pig” concept was adapted for use in wild pigs from a strategy of using radiotelemetry to find and control feral goats (Taylor and Katahira 1988). More recently, some managers in the United States have had success with the Judas technique with pigs (Wilcox et al. 2004, McCann and Garcelon 2008). In essence, the technique relies on tracking radio-tagged pigs to locate larger social groups, which can then be removed using a variety of methods. This technique has been used with some success in Australia (McIlroy and Gifford 1997, Australasian Wildlife Management Society 2006) and here in the United States (Wilcox et al. 2004, McCann and Garcelon 2008).

Managers have used a variety of techniques to capture individuals for radio tagging, including capture from helicopters and the use of dogs (Australasian Wildlife Management Society 2006), but cage traps are far and away the most common capture tool employed. Indeed, the cost efficiency of the Judas pig strategy is greatest when it can be integrated into an existing trapping program. Once captured, individuals are equipped with radio transmitting equipment (Braun 2005), visibly marked with paint or ear tags, and released. Subsequently, the tagged individuals will reintegrate with social groups and enable managers to locate large pig congregations.

Uncertainty remains about which individuals make the best subjects to serve as the Judas pig. Theoretically, because of their role as a social matron, adult females should be the best choice. However, ongoing research has failed to conclusively confirm this prediction, and others have actually suggested that adult males may be better suited to serve as the betraying individual (Australasian Wildlife Management Society 2006). In reality, the research conducted thus far was not large or comprehensive enough to
address this issue fully; more research is needed to help identify which type of pig (adult versus juvenile, male versus female) is most effective to radio tag and betray its cohorts.

Managers can use the knowledge of pig group locations in many ways to facilitate control. Although little research has been conducted in the United States regarding the Judas pig concept, Australian researchers have demonstrated its effectiveness in many ways. Managers in other countries have used knowledge of pig group locations to refine the placement of toxicant baits, thereby increasing effectiveness and decreasing cost (McIlroy and Gifford 1997). In addition, aerial shooting can be substantially more effective using the Judas pig technique (Australasian Wildlife Management Society 2006), and anecdotal reports indicate similar increases in effectiveness for night shooting programs.

On the other hand, McCann and Garcelon (2008) evaluated the Judas pig technique to reduce pig populations on Pinnacle National Monument and concluded by being skeptical about the value of the technique. In any case, McCann and Garcelon (2008) recommended strongly that managers employing the Judas pig technique sterilize animals before releasing them back into the population, as they spent significant time removing offspring of their Judas pig subjects from the population.

Hunting with Dogs

Hunting with dogs can be effective at reducing wild pig populations in local areas and has been successfully used as part of larger control programs (Choquenot et al. 1996). In some cases, though, hunting with dogs simply causes pigs to move into adjacent areas. This shift in location can protect small, isolated, sensitive areas but may simply relocate the problem rather than alleviate it (Barrett and Birmingham 1994). On the other hand, some have speculated that harassment, such as that created by hunting with dogs, can cause home range shifts away from particular areas of concern and thus is a viable management technique (Engeman et al. 2006, Hayes 2007, Gaston 2008).

Many factors must be considered if hunting with dogs is to be successful. The experience of the dogs and hunters are integral elements in the success of this method. Poorly trained dogs, unseasoned hunters, hot weather, injuries, and the cost of good dogs, their training, and their care.
can all be impediments to the success of this method (Mapston 1999). In many areas of the South, hunters often do not actually kill pigs during the hunt, but rather use dogs to help capture individual pigs, which are transported to a holding pen or another area. These practices are particularly troublesome as such transport can spread diseases and compromise broader control efforts. Those interested in using dog-assisted hunting as part of a management strategy should review the detailed account by Mayer et al. (2009).

Toxicants

No chemical toxicant is registered for use on wild pigs in the United States. However, the motivation to identify and register a toxicant for wild pigs is strong because it can be a powerful and cost-effective tool for controlling or eliminating animal populations. For example, Coblentz and Baber (1987) reported that poisoning was 11 times cheaper than shooting and 80 times cheaper than trapping during a pig eradication program in Ecuador. Thus, researchers are working to identify a toxicant that can humanely kill wild pigs while having a benign effect on nontarget animals and the larger environment.

No chemical toxicant is registered for use on wild pigs in the United States.

Toxicants are an effective and important tool for pig control in some countries, Australia and New Zealand in particular. Warfarin, an anticoagulant widely used as a rodent toxicant, has been used to control and nearly eliminate wild pig populations in Australia (Saunders et al. 1990). However, because of secondary poisoning and other environmental concerns, warfarin is not currently an option in the United States.

More recently, researchers in Australia have developed the product PIGOUT®, a bait containing the compound 1080, to achieve population reduction of at least 73% (Cowled et al. 2006a). PIGOUT is designed to attract wild pigs and not other native wildlife species in Australia. During trials in Australia, which has no native midsized generalist mammals and thus is an environment where species-specific baits are viable, the product has shown great promise (Cowled et al. 2006b). Unfortunately, research in Texas demonstrated that many nontarget species (mostly midsized generalist mammals) would be adversely impacted by toxicant-laced PIGOUT baits in North American ecosystems, and thus it is currently not a viable alternative in the United States (Campbell et al. 2006).

Although PIGOUT has been shown to be effective in controlling pig populations in Australia without adversely affecting nontarget animals, some problems do exist with its use. Most notably, pigs are relatively insensitive to 1080, some perceive the toxin to cause an inhumane death, it can remain toxic in the carcass and environment, and there is no antidote if humans are accidentally exposed to the toxin. In search for answers to these problems with 1080, an Australian research team has identified another toxin, sodium nitrite, that reportedly causes a quick and humane death, is palatable yet toxic to wild pigs, is cheap and accessible, is degradable in the environment, and reduces risk to the operator as it has an effective antidote (Invasive Animals CRC 2008). Sodium nitrite already has undergone some preliminary pen trials, which are promising, and field trials are now under way in the form of a commercial formulation named HOG-GONE® (Cowled et al. 2008).

For any toxicant to become a viable technique in the United States, researchers must develop either toxicants or delivery systems that are species specific. Of these, development of a species-specific delivery system is most likely. Researchers are currently working to evaluate 2 delivery systems that were designed to deliver baits (that could be laced with either toxicants or contraceptive agents) to wild pigs while restricting access of other species. Researchers in the United Kingdom have developed the Boar Operated System (BOS), which consists of a bait...
platform and sliding cover (Personal Communication, Giovanna Massei, United Kingdom Central Science Laboratory). Australian researchers have likewise developed a device to distribute baits to wild pigs but not to other species, the Boar Buffet® (Lapidge et al. 2009). Both of these systems exploit pigs’ behavioral tendencies (feeding behavior) and physical traits (size and strength) to provide adult pigs access to bait, while limiting access to most other species. Some species like black bears, though, presumably could defeat the device. Although these devices show promise as a management tool, researchers have much work yet to do in evaluating their effectiveness and species specificity in various ecosystems.

NONLETHAL TECHNIQUES

Fencing

Excluding wild pigs with wire mesh fencing, electric fencing, or a combination of both can be an effective control measure. While few fence designs completely exclude pigs from an area, many fences can restrict pig movements. Though fences may restrict pig movements, they can be expensive to install and managers must ultimately consider the value of the commodity and cost of the fence before committing to this avenue of control (Conover 2002). Sturdy wire mesh fencing, particularly with the addition of an electrified wire about 6 to 8 inches off the ground, seems to be the most effective fence design to exclude wild pigs (Hone and Atkinson 1983).

Nonelectric fences should be of net wire or diamond mesh construction with a maximum of 6-inch spacing (Littauer 1993). To be effective in sheep- or goat-rearing areas, spacing should be no more than 4 inches to prevent livestock from sticking their heads through the fence. Fences should be at least 36 inches high, and the bottom wire should be tightly stretched on the ground surface or buried (Mapston 1999). While fencing can be an effective management technique, installing poorly designed or improperly constructed fences around areas in hopes of reducing pig damage can simply add the expense of frequent fence repair to the cost of damage (Beach 1993).

The addition of one or more electrified wires into existing net wire or other fences is possible and will reduce the likelihood of wild pigs penetrating the fence (Hone and Atkinson 1983, Littauer 1993). If installing new fences, though, simple electric fences with just a few electrified wires represent an attractive option because they are cheaper and easier to install than traditional net wire fencing. Reidy et al. (2008) reported that portable electric fences can significantly restrict, although not completely eliminate, the movement of pigs into a protected area. They found that simple electric fences consisting of only 2 electrified wires, one at 8 inches and one at 18 inches above the ground, were as effective as 3-wire designs and reduced daily intrusions of pigs into an area by 50%. Though initially cheap and easy to install, electric fences with low wires can require substantial
maintenance to prevent growing vegetation from contacting and grounding the electric wires.

Harassment

Human activity can have a substantive impact on pig behavior, movement, and survival. Although probably not an effective strategy on a large scale, harassment of pigs through hunting and pursuit may be a very effective technique for reducing pig populations and damage on small areas and for discrete resources. Engeman et al. (2003, 2006) reported that recreational hunting, even when few animals are actually harvested, reduced damage to sensitive wetland sites in Florida. Many have reported that pigs reduce or shift home ranges in response to hunting, trapping, and other harassment, and even that juvenile survival is reduced in the face of such pressure (Hayes 2007, Gaston 2008). On the other hand, Sodeikat and Pohlmeyer (2003) found that pigs may temporarily flee an area in the face of intense hunting, but they often return to their original home range.

Vaccination

Some studies have been conducted on the feasibility of vaccinating wild pig populations as a means of protecting domestic stock and other wildlife. One study into the possibility of a brucellosis vaccination in the southeastern United States had positive results (Elzer 1999). By delivering a brucellosis vaccine orally in a mixture of corn syrup and pecan shells poured over corn, the researchers managed to vaccinate wild pigs. This method relies on the use of a viscous solution (corn syrup) to contain the vaccine combined with an oral scarification agent (pecan shells) to allow the vaccine direct access to tissues (Elzer 1999). Vaccination may become a nonlethal method to control disease spread in wild pig populations as further research improves upon economic feasibility and refines delivery techniques. However, this method is not currently viable for widespread use, nor does it alleviate myriad other problems associated with wild pig presence.

Contraception

Interest is strong in developing contraceptives capable of limiting wild pig populations over time. Some studies have shown injections of gonadotropin-releasing hormone (GnRH) to be effective in captive wild pigs (Killian et al. 2003). Results of GnRH injections included reduced ovary and testis weight, reduced levels of testosterone and progesterone, and reduced pregnancy rates in treated pigs when compared to controls (Killian et al. 2003). Unfortunately, these compounds are still under investigation and are currently available only in injection form, an unrealistic method for field application. Questions remain as to the duration of infertility, the reversibility of the effects, and whether an oral form of the vaccine—more conducive to wild pig management—can be developed.

One contraceptive vaccine being examined for approval and registration is GonaCon™. GonaCon is a single-shot, multiyear, GnRH immunocontraceptive vaccine that decreases sexual activity and prevents animals from entering a reproductive state through manipulation of hormones. Studies have shown that GonaCon Immunocontraceptive Vaccine suppresses reproduction in treated animals of both sexes and
keeps females infertile without boosting. However, this infertility is not permanent (lasting 1 to 4 years) and reverses on its own over time. Multiple injections increase the longevity of the vaccine (Miller et al. 2004). The GnRH vaccine has been shown to induce contraception in several mammalian species, including ground squirrels, domestic cats, domestic and feral pigs, and deer (Fagerstone et al. 2008). GonaCon is currently under review for possible approval as a restricted-use vaccine. For now, there are no contraceptives available for wild pigs.
SUMMARY

Wild pigs are and will continue to be a challenging problem for wildlife managers, landowners, farmers, conservationists, and others. Despite ongoing control programs, wild pigs have increased both their range and population size. Because of this growth, wildlife managers will increasingly be involved in dealing with problems caused by wild pigs traditionally, as well as emerging problems such as landscaping damage in suburban areas. Certainly, wild pigs promise to be one of the more significant and challenging vertebrate wildlife pests for the foreseeable future. In response, wildlife professionals have dedicated significant effort to better manage problems caused by wild pigs, as more and more research, conferences, symposia, and articles in the profession are focused on pig-related issues (Ditchkoff and West 2007).

As Conover (2002) notes, human-wildlife conflicts are complex, and a myriad of ecological, biological, social, legal, and economic factors are involved. As a result, few wildlife problems have single or simple solutions. Instead, the most successful wildlife damage management strategies employ a diversity of tactics in a comprehensive, integrated approach. Without doubt, this principle is applicable to wild pigs. An integrated approach to wild pig management — where managers use a variety of techniques to remove pigs and prevent damage — is most effective (Choquenot et al. 1996, Mapston 1999). Wild pigs may quickly learn to avoid single control techniques but often have difficulty avoiding multiple techniques implemented in combination (Richardson et al. 1997). Nevertheless, it is
unlikely that individual landowners will be able to reduce pig populations, regardless of the intensity of control efforts on their individual properties. If a population reduction is desired, it almost certainly will require efforts across a geographic area larger than that of the average private landholding. In such cases, landowners may need to create partnerships among neighbors to jointly pursue the reduction of pig populations.

Successful management strategies will certainly depend upon persistent, adaptive, and integrated management programs that incorporate sound biological and ecological information (Campbell and Long 2009). These strategies alone, though, are insufficient. Because wild pigs reside principally on private lands over much of their range, astute wildlife managers will understand that stakeholder involvement and education are paramount to managing wild pig problems. As West (2009) articulates, the problems associated with wild pigs can be defined only within the context of human perceptions, experiences, and values. As such, an integrated management approach, in addition to addressing the biological and ecological aspects of wild pigs, will seek to engage stakeholders via comprehensive education and communication programs. We hope this guide can be a valuable tool in that crucial task.

Wild pigs can cause damage in a variety of areas, not just in agricultural fields. Here, pigs have caused significant damage to residential lawns in Texas. As the range and abundance of wild pigs increase, these kinds of problems will become more common.
LITERATURE CITED

Bruce, J. 1941. Mostly about the habits of the wild boar. California Conservationist, 6:14, 21.

California Food Emergency Response Team. 2007. Investigation of an Escherichia coli O157:H7 outbreak associated with Dole pre-packaged spinach. California Department of Health Services, Food and Drug Branch, Sacramento, California, USA.

Hayes, R. C. 2007. Feral hogs in central Mississippi: Home range, habitat use and survival. Thesis, Mississippi State University, Starkville, Mississippi, USA.

Huff, M. H., 1977. The effect of the European wild boar (Sus scrofa) on the woody vegetation of gray beech forest in the
Great Smoky Mountains. Southeast Region Uplands Field Resources Laboratory, Gatlinburg, Tennessee, USA.

Kaller, M. D. 2005. The macroinvertebrate community ecology of lowland, subtropical streams in Louisiana. Dissertation, Louisiana State University, Baton Rouge, Louisiana, USA.

Baruch Forest Science Institute, Clemson University, Georgetown, South Carolina, USA.

Mayer, J. J., and C. B. Shedrow. 2007. Annotated bibliography of the wild pig (Sus scrofa). Washington Savannah River Company, Aiken, South Carolina, USA.

Seymour, G. 1970. Wild pig: Sportsmen show increased interest in the European wild pig. State of California, Department of Fish and Game, Sacramento, California.

Sparklin, B. D., M. S. Mitchell, L. B. Hanson, D. B. Jolley, and S. S. Ditchkoff. 2009. Territoriality of feral pigs in a highly...

Wolf, T., and M. R. Conover. 2003. Feral pigs and the environment: an annotated bibliography. Berryman Institute Publication 21, Utah State University, Logan, Utah, USA; Mississippi State University, Starkville, Mississippi, USA. (Available online at www.berrymaninstitute.org.)

APPENDIX

Detailed construction plans for a cage trap employing a Kerrville Rooter Gate with Missouri Trigger
MATERIALS LIST:

GATE FRAME:
14' - 2"x2"x ½" ANGLE IRON
38" - 1/2" COLD ROLL

GATE:
42' - 3/4" x 3/4" 16 GAUGE Sq. TUBING
15' - 3/4" OD ROUND TUBING w/.095 WALL

GATE PANEL:
21' - 1" SCH. 40 PIPE

TRIGGER MECHANISM:
20' - ¾"x¾" 16 GAUGE Sq. TUBING
33' - 1"x1" Sq. 14 GAUGE TUBING
9' - ⅛" ROUND STOCK
1 - 1" RING
8" 2x2 ANGLE IRON

OTHER SUPPLIES:
14.5 GAUGE WIRE, DOUBLED & TWISTED
10 - 6'-6" 'T' POSTS
3 - 4x4 WIRE PANELS 16' LONG x 5' MIN. HIGH

FENCE ISOMETRIC VIEW
NOT TO SCALE

FENCE PLAN VIEW
SCALE: 1/16" = 1'-0"

TIE 'T' POSTS TO PANELS WITH 14.5 GA. WIRE

TRIP WIRE 2" TO 4" OFF GROUND

SINGLE STRAND WIRE

BAC'T (CORN)

(3) 16'x6' SECTIONS OF 4 GAUGE PANELS WITH 4"x4" SPACING. POSTS PLACED AT PANEL SEAMS AND 4' TO 6' INTERVALS.

APPROX. 16' DIA

OVERLAP PANELS 1'
AUTHORS

BEN C. WEST
Ben earned degrees in natural resources and wildlife biology from the University of Tennessee-Martin (B.S.), Virginia Tech (M.S.), and Utah State University (Ph.D.). Since joining the faculty at Mississippi State University, Ben has been involved in a number of extension/outreach projects involving wildlife damage management. Now, as outreach coordinator for the Berryman Institute, Ben coordinates training and produces educational products for wildlife damage professionals nationwide.

ANDREA “ANDI” L. COOPER
Andi is a native Mississippian who attended Mississippi State University where she majored in Wildlife and Fisheries Science, Wildlife Science option. She received her Bachelor’s in 2004 and master’s degree in 2007. She currently holds a position with Ducks Unlimited’s Southern Regional Office in Ridgeland, MS as their Communications Biologist and is responsible for the communications needs of the 15 states in the Southern Region.

JAMES “JIM” B. ARMSTRONG
Jim is a professor and coordinator for the Extension Forestry, Wildlife and Natural Resources Program for the Alabama Cooperative Extension System and Auburn University, School of Forestry and Wildlife Sciences. He has served as chair-elect/chair/past-chair of the Wildlife Damage Working Group of The Wildlife Society and has been a TWS-certified wildlife biologist since 1987. Jim’s professional interests revolve around all aspects of wildlife damage management and human dimensions of wildlife management.
Support for this project was provided by

BERRYMAN INSTITUTE
Resolving Human-Wildlife Conflicts

MISSISSIPPI STATE UNIVERSITY Utah State University AWF

ASSOCIATION of FISH & WILDLIFE AGENCIES USDA
United States Department of Agriculture
Animal and Plant Health Inspection Service
Wildlife Services