Best management practices to mitigate faecal contamination by livestock of New Zealand waters
New Zealand Journal of Agricultural Research , 50 , 2007

Collins, R. , McLeod, M., Hedley, M., Donnison, A., Close, M., Hanly, J., Horne, D., Ross, C., Davies-Colley, R., Bagshaw, C.S., Matthews, L.

This paper summarises findings from the Pathogen Transmission Routes Research Program, describing pathogen pathways from farm animals to water bodies and measures that can reduce or prevent this transfer. Significant faecal contamination arises through the deposition of faeces by grazing animals directly into waterways in New Zealand. Bridging of streams intersected by farm raceways is an appropriate mitigation measure to prevent direct deposition during herd crossings, whilst fencing stream banks will prevent access from pasture into waterways by cattle that are characteristically attracted to water. Riparian buffer strips not only prevent cattle access to waterways, they also entrap microbes from cattle and other animals being washed down-slope towards the stream in surface runoff. Microbial water quality improvements can be realised by fencing stock from ephemeral streams, wetlands, seeps, and riparian paddocks that are prone to saturation. Soil type is a key factor in the transfer of faecal microbes to waterways. The avoidance of, or a reduction in, grazing and irrigation upon poorly drained soils characterised by high bypass flow and/or the generation of surface runoff, are expected to improve microbial water quality. Dairyshed wastewater should be irrigated onto land only when the water storage capacity of the soil will not be exceeded. This “deferred irrigation” can markedly reduce pollutant transfer to waterways, particularly that via subsurface drains and groundwater. Advanced pond systems provide excellent effluent quality and have particular application where soil type and/or climate are unfavourable for irrigation. Research needs are indicated to reduce faecal contamination of waters by livestock.